
Guide to PortalProdigy THTML and Page Management for
Web Designers

Created November 6, 2006
Last Modified March 28, 2007

Overview:

This guide provides an overview of the PortalProdigy page design process. It will
introduce you to THTML and explain how to use THTML to create custom page and
component designs for PortalProdigy websites. This guide is intended for Web
Designers and it assumes that the reader has a thorough understanding of HTML, CSS,
and Java Script.

What is THTML?

THTML is an acronym for Template Hyper Text Markup Language.

THTML is an extension of the HTML markup language and is used to create template
styles for PortalProdigy. Template styles control the visual design of the website.
THTML provides tags for inserting content in the template styles and describing how it
should be displayed. THTML gives you access to PortalProdigy’s forms, fields, controls,
and CSS classes.

THTML tags follow the same conventions as HTML tags. The PortalProdigy Server
dynamically replaces THTML tags with HTML formatted content to deliver W3C
compliant HTML to the user’s browser.

Using THTML you can create new designs from scratch as well as create modified
versions of the designs that are included with PortalProdigy. You can also use THTML
to duplicate the design of an existing website for conversion to PortalProdigy.

The best way to learn THML is to study the template designs that are included with
PortalProdigy. PortalProdigy calls its template designs “Styles”. The Styles that are
included (shipped) with PortalProdigy are classified as Standard Styles. When you create
a style it gets classified as a Custom Style. The code for each of the Standard Styles is
accessible from within PortalProdigy so you can view, study, and modify it. The code
can be viewed directly from within PortalProdigy as well as downloaded to your
computer. This guide also provides a number of examples to assist you in learning
THTML.

Page Construction

The basic architecture of a PortalProdigy page is as follows.

The template for a page design is called a Page Style. Page Styles define the layout and
general design of a page. Page Styles provide a framework and serve as containers for
dynamically inserted objects.

A Page Style is divided into sections:

• Header
• Left Side Bar
• Right Side Bar
• Main Content
• Footer

Sections serve as containers for components. Components are predefined objects that
provide data and/or functionality for some specific purpose or feature.

Some examples of components that are available for inclusion in the Header Section are:

• Logo
• Organization Title
• Login form
• Site Search
• Shopping Cart Summary
• Menu Bar

The picture below highlights a Site Search Component located in menu bar of the Header
Section:

The picture below highlights a Shopping Cart Summary Component located in the Left
Side Bar Section:

THTML tags are used to define the location of each section along with its visual design.
The visual design for how a section is displayed is called a Section Style. THTML tags
are also used to define the visual design of components. The visual design for how a
component is displayed is called a Component Style.

Components are managed by end users from within the PortalProdigy user interface. End
users have the ability to select the components they want to include in each section on a
page by page basis. When they select a component they select a style that defines the
visual design for how the component is displayed. In addition, they can manage and
select data that is displayed within a component.

Each component can have one or more styles. This will be explained in greater detail
later on in this guide. What is important to understand is that you can define component
styles within your page style, but the end user has ultimate control to include or exclude
components and select the styles used to display them. PortalProdigy also provides the
ability to create your own Components which are called Custom Unstructured Mini
Browsers (MBs). Custom Unstructured MBs will be explained in greater detail later on
within this guide.

When you create a style for PortalProdigy you have the option of creating a single HTML
file that contains everything we have discussed thus far, including the Page Style, Section
Styles and Component Styles. You also have the option to define your Section Styles and
Component Styles independently of Page Styles. E.g. you may want to create a
customized Component Style for the Shopping Cart Summary shown in the example
above. You can create the Style for this one component and register it in PortalProdigy.
You may want to create a different Header for use on Product Catalog pages. You can
create the Style for just a Header and register it in PortalProdigy.

When you create Page Styles you have the option of defining Section Styles without
defining the Components that will be inserted within them. You simply define where
each of the Sections shall be inserted within the Page Style along with each section’s
general design. E.g. you might indicate where a Left Side Bar Section is to be inserted.
When you define the Left Side Bar you will leave it empty. You will simply define its
characteristics such as the width, border style, and independent graphical elements.

You also have the option to define the Component Styles internally within the Page Style.
This second method allows you to design web pages in a manner that you are most likely
accustomed to, where everything is included in a single HTML page that can be
visualized as a single page using standard web design tools.

When a Page Style is registered in PortalProdigy, the PortalProdigy Page Style Processor
extracts each Section Style and each Component Style from the page and separately
registers each of them in the system. With the Section Styles and Component Styles
extracted from the Page Style, the end user is then able to individually manage them,
change them, and to re-use them in other Page Styles. Thus PortalProdigy allows end
users to create their own combinations of Page Styles, Section Styles and Component
Styles. This architecture gives the end user tremendous flexibility.

PortalProdigy also gives the end user the ability to select a unique Page Style for each
Page Type. Examples of Page Types are Home Page, Product Catalog Category Page,
Product Detail Page, Event Listing Page, etc. In some cases end users are given the
ability to select a unique Page Style for specific records such as an event record, product
record, etc. End users are also given the ability to independently select a Style for the
Header Section, Main Content Section, Footer Section, and for each Component that is
used within a Section.

For each page, the Page Style, Component Styles, and other parameters that define the
page are referred to as “Page Settings”. A tool named Page Manager is used to
dynamically manage these Page Settings. Collectively the Page Settings for a single page
are referred to as a “Page Settings Collection”. Page Settings Collections can be saved
and re-used by other pages. Each page has the option to inherit Page Settings from a
Page Settings Collection along with the ability to override individual settings.
Inheritance of Page Settings greatly minimizes the maintenance burden, allowing changes
to cascade from one page to others.

Each Page Settings Collection allows you to define separate Component Collections for
the page’s Header, Left Side Bar, Main Content, Right Side Bar, and Footer. These
Component Collections can be used by other Page Setting Collections. If it all seems a
little overwhelming, just take a look at Page Manager and go through its options. Once
you see it in action it should start to make sense. And once you get the hang of it, you
will discover how truly flexible and how easy it is to use. We also explain this process in
greater detail in the following sections.

You may create styles using any HTML Editor that can output W3C compliant HTML.
Styles are a combination of HTML, THTML, CSS, Java Script, images, and other
resources. Obviously your editor will not be able to interpret the THTML tags. The
THTML tags will either be ignored by your editor or displayed as text.

Example of a Page Style opened in Dreamweaver MX:

When creating a new template you begin the design process by creating a Page Style. The
Page Style provides a framework for the page. You will divide the page into sections.
The Page Style may include elements that are outside of sections. E.g. it may contain a
background color that applies to the entire page. However most of the design elements
will be placed within the sections. Within the Page Style you will use THTML to specify
where each section belongs. You will also use THTML to define any Component Styles
that you include within the Page Style.

When you register the HTML file in PortalProdigy, the PortalProdigy Style Processor
will parse the file, removing each section style and component style, and independently
registering them. Why does it do this? It does this so it can give the end user the ability
to manage them.

The Page Style is stored as a shell within PortalProdigy. When a page is requested from
the website, PortalProdigy’s Page Processor will assemble the page based on Page
Collection Settings. This process involves taking the Page Style (the shell) and
dynamically inserting the components and data that are specified in the Page Collection
Settings. To optimize performance, PortalProdigy automatically pre-assembles and
caches pages.

To summarize, we have told you that Styles determine the visual design. That there are
three types of Styles. There are Page Styles, Section Styles, and Component Styles.
Page Styles define the layout and general design of a page. Page Styles include Sections
for the header, left side bar, right side bar, main content, and footer. Sections serve as
containers for components. Section Styles determine the visual design of sections.
Components are objects that include data and/or functionality for specific functions and
features. Component Styles determine the visual design of a component.

Styles & Page Construction in Detail:

All Template Styles that you create or modify are categorized as Custom Styles. All
Template Styles that ship with PortalProdigy are categorized as Standard Styles. When
you create a modified version of a Standard Style, it is stored as a Custom Style. This
preserves the Standard Styles that ship with PortalProdigy so you can revert back to
them. It also maintains their accessibility as examples.

Physically a Style is an HTML file. In addition to HTML code, a Style may contain CSS
code, JavaScript code, and THTML code. A style may also include external resource
files such as images, audio, flash/shockwave, CSS, and JavaScript. Resource files must
be placed in a sub-folder of the folder where the Style’s HTML file is located. The sub-
folder must use the standard naming convention of the HTML file’s name with “_files”
appended to it. For example, the resource folder for:

c:\Page Styles\MyStyle.htm

is: c:\Page Styles\MyStyle_files

PortalProdigy uses a layered approach to web page design. A web page is broken down
into 4 layers as follows:

Layer 1 = Page
Layer 2 = Sections
Layer 3 = Components
Layer 4 = Data Elements

This approach allows you (the web designer) design control over each page type and each
component contained within a page type while at the same time providing the end user
with the ability to both select and combine the components and Component Styles that
you have created as well as to manage the content of each component. End users manage
this process using a tool called Page Manager. As the web designer you too will use Page
Manager to register and initially configure your designs. A complete description of Page
Manager including tutorials can be found in the PortalProdigy Software User and
Administration Guide.

Let’s begin by describing the hierarchy of layers and providing you with a definition for
each layer. It is not critical for you to memorize or fully comprehend the layer hierarchy
at this time. It will become clearer as you study the examples, create page designs and
register them in the system.

PortalProdigy organizes things as follows:
1. Page Types

2. Page Settings Collections
 3a. Page Style

 3b. Section Styles
 4. Section Collections
 5. Components
 6a. Component Record Sets
 6b. Component Styles
 3c. Other Settings

For each Page Type you can have one or more Page Settings Collections. E.g. the Home
Page is a Page Type, the Product Detail page is a Page Type, etc. For each Page Settings
Collection you specify a Page Style and Section Styles for the Header, Footer, and Main
Content section. For each Section you create a Section Collection. Each Section
Collection is comprised of one or more Components. For each Component you specify a
Style and Record Set.

The following is the Side Bar Collection Manager which is used to select components for
inclusion in a side bar.

Available Components are listed as a tree structure. Clicking on an Available
Component lists the Available Styles for the component. When a Component Style is
highlighted, each of the Available Record Sets for the component are listed. Highlighting
a record set and clicking the right arrow adds it to the Selected Components.

Definitions of each Layer:

1. Page Type = a category of web pages based on feature and function. Examples are
Home Page, Product Catalog Page, Product Detail Page, Shopping Cart Page, Event
Detail Page, Event Registration Page, etc. A complete list of Page Types can be viewed
using the tool named Page Type Manager which is accessible from the Utilities Menu.

2. Page Settings Collection = a set of standardized options that specify the design and
content of a page. Page Settings Collections are created and managed using the tool
named Page Manager.

3a. Page Style = a design for a web page. At bare minimum a Page Style defines a
framework that specifies which standardized sections are to be included in the page and
where. A Page Style may also include the design (Style) for each of the sections and their
corresponding components. You have the choice of including them in the Page Style or
loading them separately. Page Styles are added and managed using a tool named Style
Manager.

3b. Section Style = a design (Style) for a specific section of a web page. PortalProdigy
breaks up a page into the following sections: Header, Left Side Bar, Right Side Bar, Main
Content, and Footer. For each section you can specify the design (Style) that is used to
format the section. Section Styles are selected using Page Manager and become part of a
Page Settings Collection. Note that the style for the Left Side Bar and Right Side Bar are
always incorporated into the Page Style and are not individually managed in Page
Manager like the other sections (Header, Main Content, and Footer).

3c. Other Settings = additional standardized options that are part of a Page Settings
Collection. They are used to manage everything from the Color Scheme to Search Engine
Optimization. Other Settings are configured using Page Manager.

4. Section Collection = a set of components for a section. Section Collections are created
and managed using Collection Manager. Section Collections are assigned to Sections in
Page Manager.

5. Component = a predefined object that combines data and functionality for a specific
feature that can be inserted in web pages. Examples are menus, search, login, news,
events, advertisement, product detail, etc. Components are selected as part of the process
of creating Section Collections using Collection Manager.

6a. Component Record Set = data that is dynamically inserted within a component when
the component is displayed on a web page. Some Component Record Sets are
automatically created based on predefined program logic that is built into PortalProdigy
such as the five most recent events, the 5 most recent news items, the selected product
item, etc. Other Component Record Sets require someone to manually define them such
as menus, structured mini browsers, and quick registration forms. Component Record
Sets that are manually defined and managed using tools such as Menu Builder, Structured
Mini Browser Builder and Quick Registration Builder. Component Record Sets are
selected as part of the process of selecting Components.

6b. Component Style = a design for a component. For each component you can specify
the design (Style) that is used to format the component. Component Styles are selected
as part of the process of selecting Components.

The Parent Page Style

Section Styles and Component Styles always have a parent Page Style. This is necessary
for many reasons. Amongst them is the necessity to keep the dimensions of Section

Styles and Component Styles synchronized with a Page Style’s dimensions so that
everything fits correctly.

PortalProdigy automatically limits the listing of available Section Styles and Components
Styles to the children of the selected Page Style (the Parent). Each of PortalProdigy’s
Standard Page Styles has a set of Standard Section Styles and Standard Component
Styles that are designed specifically for the Page Style. PortalProdigy uses a standard
naming scheme for Styles such that changing Page Styles automatically selects the
Standard Section Styles and Standard Component Styles of the same name for the newly
selected Page Style. I.e. they are synchronized and automatically selected so the end user
does not have to be concerned with this. There are some exceptions where a Section Style
or Standard Component Style selection may not be available for a Page Style. In such
cases, PortalProdigy will default to different one. E.g. all Standard Page Styles have at
least one Standard Header Style named “Style A”, but they may not have a “Style B”. If
a Page Style is selected that does not have a “Style B”, PortalProdigy will automatically
select “Style A”.

When you load Custom Section Styles and Custom Component Styles they become
children of a Parent Page Style. Thus if you load a Custom Section Style or Custom
Component Style for a Standard Page Style, that Standard Page Style becomes its parent.
If you load a Custom Section Style or Custom Component Style for a Custom Page Style,
that Custom Page Style becomes its parent.

When you add a Custom Page Style, PortalProdigy allows you to inherit Section Styles
and Component Styles from one of the Standard Page Styles, thus making all of its
Section Styles and Component Styles available to your Custom Page Style. When you
select a Standard Page Style to inherit from, you will want to select the one that best
matches the dimensions and other characteristics of your Custom Page Style.

THTML Tags:

THTML tags come in several forms. There are standalone tags such as <BROLINTAG
name="ColorScheme" type="object" />; there are variable tags for use within
HTML tags such as %%PageTitle%% which is used as follows
<title>%%PageTitle%%</title>; and attribute variable tags such as link which
are used as parameter attributes within HTML tags such as Discussions</TD>.

In this section we will explain each form, their corresponding classes, and other options.
We will also provide examples of how they are used. Note that in this guide we
collectively refer to standalone tags, variable tags, and attribute variable tags, as THTML
tags.

For each Page Type, Section Type, and Component Type, Style Manager lists the
available tags along with an example. It also categorizes them by Class which we’ll

explain further on down in this section. The following are the available tags for Side Bar
Menu Styles as listed in Style Manager:

The Classes for THTML tags are:

• Style
• Field
• Image
• Link
• Control
• Form
• Repeater
• Grid Repeater
• Code
• Separator
• Custom Values

Style Tags

Style tags are used to define Styles. The following tag is used to mark the beginning
of a Header Style definition <brolintag name="HeaderStyle" type="object"
title="Style A"> and </brolintag> marks the end.

Field Tags

Field tags are used to insert values from PortalProdigy database fields. For example
%%PageTitle%% is used as follows <title>%%PageTitle%%</title> to
dynamically insert a Page Title.

Image Tags

Image tags are used to insert images that are stored in the PortalProdigy database.
For example %%Picture_small%% is used as follows <img
src="%%Picture_small%%"> to dynamically insert a product’s small
image.

Link Tags

Link tags are used to insert a dynamic link to a record or record set for a specific
page type. Link tags are actually an implementation of the standard HTML Anchor
tag. They contain a partial URL as the href value such as

href="main.asp?uri=1029&pi=" and an identifier such as id="link" or
id="HREF"> such as in <a href="main.asp?uri=1029&pi="
id="link">text. PortalProdigy dynamically completes the URL by
appending the applicable record ID to the end of the URL. For example text is used to open
the Product record with Product ID = 1002 in the Product Detail page.

Control Tags

Control tags are used to insert controls that are mapped to predefined fields and/or
actions within a form. Control tags are actually an implementation of standard
HTML tags such as the Input tag and the Anchor tag. Examples are <INPUT
name=LoginName class="BrolinSearchForm" style="width:100%;
height:16;"> and <a onClick="javascript: document.frmSSrch.submit();"
class="BrolinSearchFormTitle" style="cursor:pointer;">

Form

Form tags are used to insert PortalProdigy forms for collecting data and performing a
predefined action. For example <form name="frmPrSrch"
action="main.asp?uri=1065&fi=1" method=post> is used to collect product
search criteria and perform a search for products.

Repeater

Repeater tags are used to define a section of markup code that is to be repeated for
each value in a record set. I.e. Repeater tags provide the ability to define patterns for
the dynamic display of record sets. Repeater tags are used when the quantity of data
objects is unknown at design time, such as with a menu or a listing of products that is
maintained within PortalProdigy by end users. As the web designer you will simply
define a pattern for how a single object such as one menu item or one product is to be
displayed. PortalProdigy then applies your pattern dynamically to each object in the
record set. For example <BROLINTAG name="MenuItem"
type="repeater"> is used to mark the beginning of a section of code that is to be
applied to each menu item that is dynamically inserted in the menu.

Grid Repeater

Grid Repeater tags are used to create grids containing dynamically inserted content.
Grid Repeater tags define a section of markup code that is to be repeated for each
value in a record set that is to be dynamically inserted in the grid. For example
<BROLINTAG name=element type=gridrepeater grid_width=2
grid_height=10> is used to mark the beginning of a section of code that is to be
applied to each item that is dynamically inserted in a grid. It defines the grid as
having two items per row and a maximum of 10 rows. I.e. a grid with two columns
and a maximum of 10 rows. When the number of items in the record set exceeds the

maximum rows, PortalProdigy has the ability to automatically insert next and
previous options so the user can view the remainder of the record set.

Code

Code tags are used to dynamically insert Java Script stored in the PortalProdigy
database. For example %%script%% inserts the script defined for the Page
Collection and %%onload%% in <body onload=%%onload%%> inserts
standard PortalProdigy scripting necessary in every page.

Separator

Separator tags are used to define markup code that is to be applied based on some
predefined logic. Separator tags are often used within repeater tags to insert
graphical elements that separate the repeated items. For example
<brolinsection name="separator"> is used to apply special formatting after
each item except for the last item.

Custom Values:

Custom Values (CVs) are a type of THTML Field tag used to define variables that
can be easily managed from site administration. CVs are dynamically replaced with
values/objects maintained from within PortalProdigy. Custom Values are placed
inside of Field tags and have the prefix of cv# for Style specific scope or cvg# for
global scope. For example %%cv#SeasonalImage%% or
%%cvg#SeasonalImage%%.

CVs provide a convenient method of extending the content management capabilities
of the site. E.g. you may want to include a seasonal image within the home page
header. If the image file is specified as a CV within the Style, it will be registered by
the system and can be managed by going to the Style Management page and
selecting Custom Value Management. Files such as images and shockwave/flash
plug-ins can be replaced using the browse and upload functions in Custom Value
Management.

PortalProdigy supports three types of CVs: text values, files, and links. A text value
can be used to insert text, a font setting, HTML attribute, etc. Text values may
contain up to 255 alphanumeric characters. A file can be used to insert a jpg file, gif
file, wav file, mp3 file, Shockwave plug-in (Flash) file, etc. A link can be used to
insert a link label with corresponding URL. Be sure to only use letters and numbers
in CV names and do not use spaces. CVs are case sensitive.

Custom Values can be specified as having global scope so they may be re-used by
other Styles. The concept is similar to the programming concept of declaring a
global variable. If not specified as global the CV will be specific to the Style; i.e. it

will have a local scope and only be available to the style where it was declared.
Global CVs are managed using Global Custom Values option listed on the Utilities
Menu.

THTML Tag Usage:

Standalone THTML tags have two required attribute parameters, Name and Type.
Name is used to specify the name of the object. As mentioned above, Style Manager lists
the available Tag Names which are predefined by the system. The Type attribute is used
to specify whether the tag defines the display of a single object or a pattern for displaying
repeating objects such as menu items. Set Type=Object when you want to display a
single object. Set Type=Repeater when you want to describe a pattern for the display
of repeating objects. A third parameter, Title, is used to assign a name to the Style of an
object. The Title attribute is only used when defining a Style for the object. The
following is an example of a beginning standalone tag that is used to define a Style:

<brolintag name="HeaderStyle" type=object name=”Style A”>

Between the beginning and ending tags is where you define the object. Just like with
standard HTML tags, you can nest THTML Standalone Tags. This allows you to define
Component Styles within another Component Style and to insert Data Element objects.
When your Style is registered using Style Manager, PortalProdigy will extract each of
your nested Component Styles and independently register them. The following is an
example of a Header Style definition that contains nested Menu Style and Search
Component Style definitions:

<brolintag name="HeaderStyle" type="object" title="Style A">

<table width="100%" height="100%" border="0" cellspacing="0"
cellpadding="0">

<!-- Start of first HeaderStyle TR -->
<tr>
<td align="left" valign="top" height="19">
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td height="19" align="left" valign="top" style="padding-left:18;">
Phone: (949) 595-8300

Email: <a href="mailto:sales@brolin.net" target="_blank"
class="BrolinDarkLink">sales@brolin.net</td>
<td align="right" valign="top" height="19" style="padding-
right:15;">

<brolintag name="HeaderMenu1" type="object" title="Style A">

<table width="100%" border="0" cellspacing="0"
cellpadding="0">
<tr>

<td align="right" valign="top">

<BROLINTAG name="MenuItem" type="repeater">

<img src="HTML/17_files/bullet_04.gif"
name="Img_%%itm_id%%" width="8" height="8"
border="0" style="margin-right:15; margin-left:15;"><a
href="" onMouseOut="MM_swapImgRestore()"
onMouseOver="MM_swapImage('Img_%%itm_id%%',''
,'HTML/17_files/bullet_03.gif',1)"
class="BrolinAMenuBar" id=link>
About us

</BROLINTAG></td>
</tr>
</table>

</brolintag>

</td>

</tr>
</table>

</td>
</tr>
<!-- End of first HeaderStyle TR -->
<!-- Start of second HeaderStyle TR -->
<tr>
<td align="left" valign="top" width="860" height="125"
class="BrolinHeader"></td>
</tr>
<!-- End of second HeaderStyle TR -->
<!-- Start of third HeaderStyle TR -->
<tr>
<td align="left" valign="top" height="5"></td>
</tr>
<!-- End of third HeaderStyle TR -->
<!-- Start of forth HeaderStyle TR -->
<tr>
<td align="left" valign="bottom" height="28">

<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td align="left" valign="bottom">
<brolintag name="HeaderMenu2" type="object" title="Style B">

<table border="0" cellspacing="0" cellpadding="0">
<tr>

<BROLINTAG name="MenuItem" type="repeater">
<td>

<table width="100%" border="0" cellspacing="0"
cellpadding="0" class="BrolinBMenuBar"
style="cursor:pointer;"
id="Menu_%%itm_id%%" onMouseOver="if
(document.readyState == 'complete')
aspnm_updateCell(this.id, 'BrolinBMenuBar_hover',
'over');"
onmouseout="if (document.readyState == 'complete')
aspnm_updateCell(this.id, 'BrolinBMenuBar', 'out');">
<tr>
<td align="left" valign="bottom" width="10"
height="24"><img
src="HTML/17_files/MenuBarCornerLeft.gif"></td>
<td align="center" valign="middle" style="border-
top:1px solid #A7A7A7; padding-left:5; padding-
right:5;"><a id="link"
class="BrolinBMenuBar">Home</td>
<td align="right" valign="bottom" width="10"
height="24"><img
src="HTML/17_files/MenuBarCornerRight.gif"></td>
</tr>
</table>

</td>
<td> </td>

</brolintag>
</tr>
</table>

</brolintag>
</td>
<td height="30" align="right" valign="middle"
class="BrolinSmallStyle">

<brolintag name="SearchForm" type="object" title="Style A">

<form name="frmSSrch" action="main.asp?uri=1001&fi=1"
method=post>
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td align="right" valign="middle" class="BrolinSmallStyle"
style="padding-left:5;">
Search: <input class="BrolinSearchForm" value=""
name="SearchFor" type="text" height="14"
width="60"></td>
<td align="right" valign="middle" width="40"><a
onMouseOut="MM_swapImgRestore()" onClick="javascript:
document.frmSSrch.submit();"
onMouseOver="MM_swapImage('Image_%%itm_id%%','','HT
ML/17_files/go_on.gif',1)">
<img src="HTML/17_files/go_off.gif"

name="Image_%%itm_id%%" width="35" height="20"
border="0"></td>
</tr>
</table>
</form>

</brolintag>

<brolintag name="ProdSearchForm" type="object" title="Style A">

<form name="frmPrSrch" action="main.asp?uri=1065&fi=1"
method=post>
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td align="right" valign="middle" class="BrolinSmallStyle"
style="padding-left:5;">
Product Search:
<select name=PrDetailCategory class="BrolinSearchForm">
<option value="All" selected>- All -</option>
</select>
For:
<input class="BrolinSearchForm" name="SearchFor" value=""
type="text" height="14" width="60"></td>
<td align="right" valign="middle" width="40"><a href="#"
onMouseOut="MM_swapImgRestore()" onClick="javascript:
document.frmPrSrch.submit();"
onMouseOver="MM_swapImage('Image_%%itm_id%%','','HT
ML/17_files/go_on.gif',1)">
<img src="HTML/17_files/go_off.gif"
name="Image_%%itm_id%%" width="35" height="20"
border="0"></td>
</tr>
</table>
</form>

</brolintag>
</td>
</tr>
</table>
</td>
</tr>
<!-- End of forth HeaderStyle TR -->
</table>

</brolintag>

Let’s breakdown the previous example.

The Header Style “Style A” begins with:

<brolintag name="HeaderStyle" type="object" title="Style A">

And ends with:

</brolintag>

Between these two tags is the definition of the Header as well as the definitions for sub-
components contained with the Header. The following code is part of the Header Style
definition:

<table width="100%" height="100%" border="0" cellspacing="0"
cellpadding="0">

<!-- Start of first HeaderStyle TR -->
<tr>
<td align="left" valign="top" height="19">
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td height="19" align="left" valign="top" style="padding-left:18;">
Phone: (949) 595-8300

Email: <a href="mailto:sales@brolin.net" target="_blank"
class="BrolinDarkLink">sales@brolin.net</td>
<td align="right" valign="top" height="19" style="padding-
right:15;">

After this is a nested definition of the Header Menu Style “Style A”:

<brolintag name="HeaderMenu1" type="object" title="Style A">

<table width="100%" border="0" cellspacing="0"
cellpadding="0">
<tr>
<td align="right" valign="top">

<BROLINTAG name="MenuItem" type="repeater">

<img src="HTML/17_files/bullet_04.gif"
name="Img_%%itm_id%%" width="8" height="8"
border="0" style="margin-right:15; margin-left:15;"><a
href="" onMouseOut="MM_swapImgRestore()"
onMouseOver="MM_swapImage('Img_%%itm_id%%',''
,'HTML/17_files/bullet_03.gif',1)"
class="BrolinAMenuBar" id=link>
About us

</BROLINTAG></td>
</tr>
</table>

</brolintag>

Nested within the definition of the Header Menu Style “Style A” is a Repeater:

<BROLINTAG name="MenuItem" type="repeater">

The Repeater is used to define how each menu item is to be displayed. The following
includes the beginning Repeater Tag, the definition of how to display the repeating
object, and the ending Repeater Tag:

<BROLINTAG name="MenuItem" type="repeater">

<img src="HTML/17_files/bullet_04.gif"
name="Img_%%itm_id%%" width="8" height="8"
border="0" style="margin-right:15; margin-left:15;"><a
href="" onMouseOut="MM_swapImgRestore()"
onMouseOver="MM_swapImage('Img_%%itm_id%%',''
,'HTML/17_files/bullet_03.gif',1)"
class="BrolinAMenuBar" id=link>
About us

</BROLINTAG></td>

When the page is built, PortalProdigy will use the Repeater definition to dynamically
insert and format each Menu Item that is part of the Menu’s Record Set. You could hard
code the menu items in your code, but this would prevent end users from managing the
menu items using PortalProdigy’s content management capabilities. There may be some
exceptions where you may want to hard code content; however, in most cases this defeats
the purpose and value of having a menu driven content management system such as
PortalProdigy.

Another form of the Standalone Tag is used for defining the insertion of sections within a
component where some programming logic is needed. The following is an example of a
Section Tag:

<brolinsection name="separator">

Section Tags are often used within Repeater Tags to insert something between the
objects. Let’s say you want to insert a graphical element between all menu items except
for the last one. You could use a Section Tag to accomplish this. The following is an
example:

<brolinsection name="separator">

<tr>
<td height="9" background="HTML/17a_files/dot.gif"
style="background-repeat:repeat-x; background-position:center;"
colspan="2"></td>
</tr>

</brolinsection>

THTML also uses the Class and ID attributes to reference PortalProdigy components and
objects within standard HTML tags. E.g. the standard HTML Anchor tag can be used as
follows <A class=BrolinAMenuBar id="cv#Avl" href=""

target="">Donations to insert a link defined as a Custom Value and to format
it using a PortalProdigy CSS class. Note that the href="" and target="".
PortalProdigy will insert the attribute values dynamically based on the specified ID. The
text Donations will be removed by PortalProdigy’s Style Processor and replaced with
the value from the record set. It is just used as a placeholder/example for visualization
purposes within the Style.

Page Styles:

The minimum requirements for a Page Style are:

• Preface tags/code (described below)
• Header Style
• Left Side Bar section tag (if your design includes a Left Side Bar)
• Main Content section tag
• Right Side Bar section tag (if your design includes a Left Side Bar)
• Footer Style

You may also include definitions for Component Styles, but they are not required. The
following examples are taken from the Standard Page Style 17a.

Every Page Style should include the following preface tags/code inserted at the very top
before all other code:

<HTML>
<HEAD>
<TITLE>%%PageTitle%%</TITLE>
<META http-equiv=Content-Type content="text/html;
charset=windows-1251">
<META content="" name=Description>
<META content="" name=keywords>
<META http-equiv=Cache-control content=no-cache>
<META content="MSHTML 6.00.3790.0" name=GENERATOR>
<LINK href="HTML/1_files/styles.css" type=text/css rel=stylesheet>
<LINK href="images/calendar.css" type=text/css rel=stylesheet>
<BROLINTAG name="ColorScheme" type="object" />
<SCRIPT language=JavaScript src="images/js/DialogBox.js"
type=text/javascript></SCRIPT>
<script type="text/JavaScript">%%script%%</script>
</HEAD>
<BODY onLoad="%%onload%%"
onkeydown=javascript:hotKeys(event);>

Let’s breakdown the previous code:

1) Page Title tag. The Page Title value will be inserted dynamically by PortalProdigy.

<title>%%PageTitle%%</title>

2) Meta tags as follows. The Description and Keyword content attribute values will be
inserted dynamically by PortalProdigy. The Charset value will be dynamically
replaced only if one is entered in Page Settings; otherwise the value you placed in the
style is used.

<META http-equiv=Content-Type content="text/html;
charset=windows-1251">

<META content="" name=Description>
<META content="" name=keywords>
<META http-equiv=Cache-control content=no-cache>
<META content="MSHTML 6.00.3790.0" name=GENERATOR>

3) CSS. Place your CSS before inserting the tags for PortalProdigy’s standard CSS and
Color Scheme as follows:

<LINK href="HTML/1_files/styles.css" type=text/css rel=stylesheet>
<LINK href="images/calendar.css" type=text/css rel=stylesheet>
<BROLINTAG name="ColorScheme" type="object" />

Even when you are not using PortalProdigy’s CSS tags in the Page Style, you want to
include the above lines because components that are inserted dynamically will need
them. CSS Classes for Colors are managed using Color Manager. For each
element’s Background Color and Font Color, Page Manger displays the CSS Class
name as a tool tip.

4) JavaScript. If you are using PortalProdigy’s JavaScript insert as per the following
example:

<SCRIPT language=JavaScript src="images/js/DialogBox.js"
type=text/javascript></SCRIPT>

5) Script tag. The script value %%script%% will be inserted dynamically by
PortalProdigy.

<script type="text/JavaScript">%%script%%</script>

6) Onload tag. The onload value %%onload%% will be inserted dynamically by
PortalProdigy. The onkeydown is to used enable PortalProdigy’s hotkeys. Hotkeys
allow administrators to access administrative features including the Site
Administration Menu.

<BODY onLoad="%%onload%%"
onkeydown=javascript:hotKeys(event);>

You may insert inline Javascript anywhere within your Page Style as per the example
below:

<script type="text/JavaScript">
<!--

function MM_swapImgRestore() { //v3.0
var i,x,a=document.MM_sr;
for(i=0;a&&i<a.length&&(x=a[i])&&x.oSrc;i++) x.src=x.oSrc;
}

function MM_preloadImages() { //v3.0
var d=document; if(d.images){ if(!d.MM_p) d.MM_p=new Array();
var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0;
i<a.length; i++)
if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image;
d.MM_p[j++].src=a[i];}}
}

function MM_findObj(n, d) { //v4.01
var p,i,x; if(!d) d=document;
if((p=n.indexOf("?"))>0&&parent.frames.length) {
d=parent.frames[n.substring(p+1)].document; n=n.substring(0,p);}
if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;i++)
x=d.forms[i][n];
for(i=0;!x&&d.layers&&i<d.layers.length;i++)
x=MM_findObj(n,d.layers[i].document);
if(!x && d.getElementById) x=d.getElementById(n); return x;
}

//-->
</script>

Every Page Style should have a Header Style and Footer Style and should indicate where
the Main Content Section is to be inserted. So the next step to define a Header Style
within your Page Style. The easiest method of managing the placement of the Header
and other sections is to create a table with rows for the Header, Body, and Footer. If your
design includes side bars you can create separate cells for each side bar and the main
content section. This is how the Standard Page Styles are designed. In the following
portion of the Page Style a table is defined for holding the contents of the page, including
the first row where the Header will be inserted.

a href="#_ftn10" name="_ftnref1">
<table width="860" height="100%" align="center" border="0"
cellspacing="0" cellpadding="0">
<!-- Start of first TR -->
 <tr>
 <td align="left" valign="top" height="50">

The next portion of the Page Style defines the Header Style. The Header Style includes
Component Styles for Header Menu 1, Header Menu 2, Site Search, and Product Search.

<brolintag name="HeaderStyle" type="object" title="Style A">

<table width="100%" height="100%" border="0"
cellspacing="0" cellpadding="0">

<!-- Start of first HeaderStyle TR -->

 <tr>
 <td align="left" valign="top" height="19">

<table width="100%" border="0" cellspacing="0"
cellpadding="0">
<tr>
<td height="19" align="left" valign="top"
style="padding-left:18;"> </td>
<td align="right" valign="top" height="19"
style="padding-right:15;">

Within the Header Style you can define Component Styles. The following section of code
defines Header Menu Style A.

<brolintag name="HeaderMenu1" type="object"
title="Style A">

<table border="0" cellspacing="0"
cellpadding="0">
<tr>
<td>

The next section of code defines how Menu Items are to be displayed in the Header Menu
Style A. It uses a Repeater tag, type =repeater, to define a pattern for each Menu
Items that will be dynamically inserted from a menu Record Set.

<BROLINTAG name="MenuItem"
type="repeater">

<img src="HTML/17a_files/bullet_04.gif"
name="Img_%%itm_id%%" width="8"
height="8" border="0" style="margin-
right:15; margin-left:15;"><a href=""
onMouseOut="MM_swapImgRestore()"
onMouseOver="MM_swapImage('Img_%%i
tm_id%%','','HTML/17a_files/bullet_03.gif'
,1)" class="BrolinAMenuBar" id=link>About
us

</BROLINTAG></td>

</tr></table>

</brolintag>

</td>
</tr>
</table>
</td>
</tr>

<!-- End of first HeaderStyle TR -->

<!-- Start of second HeaderStyle TR -->

<tr>
<td align="left" height="50">
<table width="100%" height="80" border="0"
cellspacing="0" cellpadding="0" class="BrolinHeader">
<tr>
<td align="left" valign="bottom" width="14"
height="14"><img
src="HTML/17a_files/header_corner_LT.gif"></td>
<td></td>
<td></td>
<td align="right" valign="bottom" width="14"
height="14"><img
src="HTML/17a_files/header_corner_RT.gif"></td>
</tr>
<tr>
<td> </td>
<td width="5" style="padding:5;">

In the next section of code a Global Custom Value tag is used to dynamically insert a
logo image. You will need to load the Logo image file in Custom Value Management.

<img id=cvg#Logo1
border="0">
</td>
<td align="left" valign="middle" style="padding-
left:15;">

In the next section of code Field tags are used to dynamically insert the Organization
Titles.

<span
class="BrolinLogo">%%OrgTitle1%%

<span
class="BrolinLogo2">%%OrgTitle2%%</td>
<td> </td>
</tr>
<tr>
<td align="left" valign="top" width="14"
height="14"><img
src="HTML/17a_files/header_corner_LB.gif"></td>
<td></td><td></td>
<td align="right" valign="top" width="14"
height="14"><img
src="HTML/17a_files/header_corner_RB.gif"></td>
</tr>
</table>

 </td>
</tr>

<!-- End of second HeaderStyle TR -->

<!-- Start of third HeaderStyle TR -->

<tr>
<td align="left" valign="top" height="5"></td>
</tr>

<!-- End of third HeaderStyle TR -->

<!-- Start of forth HeaderStyle TR -->

<tr>
<td align="left" valign="bottom" height="28">
<table width="100%" border="0" cellspacing="0"
cellpadding="0">
<tr>
<td align="left" valign="bottom">

<brolintag name="HeaderMenu2" type="object"
title="Style B">

<table border="0" cellspacing="0"
cellpadding="0">
<tr>

<BROLINTAG name="MenuItem"
type="repeater">

<td><table width="100%" border="0"
cellspacing="0" cellpadding="0"
class="BrolinBMenuBar"
style="cursor:pointer;"
id="Menu_%%itm_id%%"
onMouseOver="if (document.readyState ==
'complete') aspnm_updateCell(this.id,
'BrolinBMenuBar_hover', 'over');"
onmouseout="if (document.readyState ==
'complete') aspnm_updateCell(this.id,
'BrolinBMenuBar', 'out');">
<tr>
<td align="left" valign="bottom"
width="10" height="24"><img
src="HTML/17a_files/MenuBarCornerLeft.gi
f"></td>
<td align="center" valign="middle"
style="border-top:1px solid #A7A7A7;
padding-left:5; padding-right:5;"><a
id="link"
class="BrolinBMenuBar">Home</td>
td align="right" valign="bottom"
width="10" height="24"><img
src="HTML/17a_files/MenuBarCornerRight.
gif"></td>
</tr>

</table>
</td>
<td> </td>

</brolintag>

</tr>
</table>

</brolintag>

</td>
<td height="30" align="right" valign="middle"
class="BrolinSmallStyle">

<brolintag name="SearchForm" type="object"
title="Style A">

<table cellpadding="0" cellspacing="0"
border="0">
<form name="frmSSrch"
action="main.asp?uri=1001&fi=1" method=post>
<tr>
<td align="right" valign="middle"
class="BrolinSmallStyle" style="padding-
left:5;">Search:<input class="BrolinSearchForm"
value="" name="SearchFor" type="text"
style="height:16; width:80;"></td>
<td align="right" valign="middle"
width="40"><a onClick="javascript:
document.frmSSrch.submit();"
style="cursor:pointer;">
<img src="HTML/17a_files/go_off.gif"
border="0"></td>
</tr>
</form>
</table>

</brolintag>

<brolintag name="ProdSearchForm" type="object"
title="Style A">

<table cellpadding="0" cellspacing="0"
border="0">
<form name="frmPrSrch"
action="main.asp?uri=1065&fi=1" method=post>
<tr>
<td align="right" valign="middle"
class="BrolinSmallStyle" style="padding-
left:5;">Product Search:<select
name=PrDetailCategory
class="BrolinSearchForm">
<option value="All" selected>- All -</option>
</select>For:<input class="BrolinSearchForm"
name="SearchFor" value="" type="text"
style="height:16; width:80;"></td>

<td align="right" valign="middle"
width="40"><a onClick="javascript:
document.frmPrSrch.submit();" style="
cursor:pointer;">
<img src="HTML/17a_files/go_off.gif"
border="0"></td>
</tr>
</form>
</table>

</brolintag>

</td>
</tr>
</table>
</td>
</tr>

<!-- End of forth HeaderStyle TR -->

</table>
</brolintag>
</td>
</tr>

<!-- End of first TR -->

<!-- Start of second TR -->

<tr>
<td align="left" valign="top" height="7"
class="BrolinBMenuBar_hover"></td>
</tr>

<!-- End of second TR -->

<!-- Start of third TR -->

<tr>
<td align="center" valign="top" bgcolor="#FFFFFF"
style="padding-bottom:15; padding-top:15;">

The next portion of the Page Style defines a table as a container for the Main Content
Section and within it defines a separate table as container for the Left Side Bar Section.

<!-- Start Content + LeftSideBar Table!!! -->

<table width="97%" height="100%" border="0"
cellspacing="0" cellpadding="0">
<tr>
<td width="215" align="left" valign="top">

<!-- Start LeftSideBar -->

<table width="100%" height="100%"
class="BrolinLeftSide" border="0"
cellspacing="0" cellpadding="0">

<tr>
<td width="9%" align="left" valign="top"
height="14"><img
src="HTML/17a_files/grey_left_top.gif"></td>
<td width="82%"> </td>
<td width="9%" align="right" valign="top"
height="14"><img
src="HTML/17a_files/grey_right_top.gif"></td>
</tr>
<tr>
<td> </td>
<td align="left" valign="top">

The following tag specifies the insertion of the Component Collection for the Left Side
Bar.

%%LeftSideBar%%

If you are going to define Side Bar Component Styles within your Page Style, insert them
immediately after the %%LeftSideBar%% tag. See the Component Styles section of
this guide for examples and additional instructions.

</td>
<td> </td>
</tr>
<tr>
<td align="left" valign="bottom"
height="14"><img
src="HTML/17a_files/grey_left_bottom.gif">
</td>
<td> </td>
<td align="right" valign="bottom"
height="14"><img
src="HTML/17a_files/grey_right_bottom.gif">
</td>
</tr>
</table>

<!-- End LeftSideBar -->

</td>
<td width="13"><img
src="HTML/17a_files/Transperant.gif" width="13"
height="1">
</td>
<td width="605" align="left" valign="top"
style="padding-bottom:15;">

The following tag specifies the insertion of the Component Collection for the Main
Content Section.

%%content%%

</td></tr>
<tr>
<td align="center" valign="bottom">
</td>
</tr>

If you are going to define Main Content Component Styles within your Page Style, insert
them somewhere after the %%LeftSideBar%% tag. See the Component Styles
section of this guide for examples and additional instructions.

 <!-- End Content + LeftSideBar Table!!! -->

<!-- End of third TR -->

<td/>
<tr/>

<!-- Start of forth TR -->

<tr>
<td align="center" valign="bottom" height="72"
background="HTML/17a_files/FooterBGR.jpg"
style="background-repeat:no-repeat;">
<table width="100%" height="30" border="0"
cellspacing="0" cellpadding="0">
<tr>
<td align="left" valign="bottom" width="60"> </td>
<td align="center" valign="bottom" style="padding-
bottom:2;">

The following section of code defines a Footer Menu Style:

<BROLINTAG name="FooterMenu1" type="object" title="Style
A">

<table width="100%" border="0" cellspacing="0"
cellpadding="0"><tr>
<td align="center" valign="bottom">
<p class="BrolinTextCentered">

<brolintag name="menuitem" type="repeater">

<a href="" class="BrolinFooterAMenuBar"
id="link">Home

<brolinsection name="separator">

<img src="HTML/17a_files/bullet_02.gif"
style="margin-left:6; margin-right:6;">

</brolinsection>

</brolintag>

</p>

</td>
</tr>
</table>

</brolintag>

</td>
<td align="left" valign="bottom" width="30" style="padding-
bottom:3;">
<a href="#_ftnref1" name="_ftn1"
onMouseOut="MM_swapImgRestore()"
onMouseOver="MM_swapImage('Images_%%itm_id%%','','H
TML/17a_files/top_page_on.gif',1)">
<img src="HTML/17a_files/top_page_off.gif" border="0"
title="Top of Page" name="Images_%%itm_id%%">

</td>
<td align="left" valign="bottom" width="30" style="padding-
bottom:5;"><img src="HTML/17a_files/print.gif"
border="0" title="Print">

</td>
</tr>
</table>
</td>
</tr>

<!-- End of forth TR -->

</table>

The following section of the code defines the Footer Style.

<BROLINTAG name="FooterStyle" type="object" title="Style
A">

<p class="BrolinTextCentered">
<span
class="BrolinCopy">%%Copyright%%

<span
class="BrolinCopy">%%OwnerCopyright%%

%%Owner%%
</p>

</brolintag>

</body>
</html>

This is the end of the Page Style.

Do not use the PortalProdigy HTML Editor to edit Page Styles. The reason for this is
that the preface code will conflict with the Browser Page containing the editor. You may
use the editor to create and edit both Section and Component Styles.

Section Styles

Every Page Style should have a Header Style and a Footer Style and should indicate
where the Main Content Section is to be inserted. The Main Content Style is unique to
each Page Type. Typically you will create one Page Style for use by all pages. We
suggest defining your Home Page Main Content Component Styles within the one Page
Style. Additional Header Styles and Footer Styles can be defined independently of the
Page Style. The Main Content Section Styles for all pages other than the Home Page
should be defined independently of the Page Style. Most websites will use the Standard
Main Content Section Styles for most Page Types. Use Page Type Management to add
Main Content Section Styles for all pages other than the Home Page. Use Home Page
Manager to add Main Content Section Styles for the Home Page.

Side Bar Sections are optional. Side Bar Sections do not have separate Styles like the
Header Section, Main Content, and Footer Section. The visual design of Side Bar
Sections is always defined within the Page Style. This was done in order to simply things
since side bars are primarily empty containers for components. Side Bar Sections are
typically defined as empty cells in a table that include the Section tags
%%LeftSideBar%% and %%RightSideBar%%.

When you create Header Styles, Footer Styles, and Main Content Section Styles
independently of Page Styles, do not include the Preface code that was described for Page
Styles.

Component Styles:

As mentioned previously, Component Styles may be created independently of Page
Styles or they may be defined within a Page Style. When created independently, do not
include the Preface code that was described for Page Styles. This code is always
provided by the Page Style and should never be placed in Section or Component Styles.

The following is a style for a Shopping Cart Component:

<TABLE cellSpacing=0 cellPadding=0 width="100%" border=0>

<TBODY>
<TR>
<TD height=59>

<TABLE cellSpacing=0 cellPadding=0 width="100%"
border=0>

<TBODY>
<TR>
<TD vAlign=bottom align=left width=58
height=59><IMG

src="HTML/17a_files/shopping_bag17.gif"></TD
>

<TD vAlign=bottom>

<TABLE height=59 cellSpacing=0
cellPadding=0 width="100%" border=0>

<TBODY>
<TR>

<TD style="BACKGROUND-
REPEAT: repeat-x"
background=HTML/17a_files/ti
tle_top.gif bgColor=#ffffff
height=19></TD>

</TR>
<TR>

<TD class=BrolinSmallStyle02
vAlign=center align=left
bgColor=#ffffff>Your
Cart</TD>

</TR>
<TR>

<TD style="BACKGROUND-
REPEAT: repeat-x"
background=HTML/17a_files/ti
tle_bottom.gif
height=11></TD>

</TR>
</TBODY>

</TABLE>

</TD>

<TD vAlign=bottom align=right width=49
height=59><IMG
src="HTML/17a_files/title_end02.gif"></TD>

</TR>

</TBODY>

</TABLE>
</TD>
</TR>

<TR>
<TD>

<TABLE class=BrolinBackgroundGrey height="100%"
cellSpacing=0 cellPadding=0 width="100%" border=0>

<TBODY>
<TR>

<TD style="BACKGROUND-REPEAT: repeat-
y"

background=HTML/17a_files/mb_left.gif><
/TD>
<TD vAlign=top align=left>

<P class=BrolinSmallStyle>Items:
%%Qty%%</P>
<P class=BrolinSmallStyle>Subtotal:
%%Price%%</P>
<P class=BrolinSmallStyle><A
id=more
onmouseover="MM_swapImage('Ima
gesh_%%itm_id%%','','HTML/17a_fi
les/shopping_bt_on.gif',1)"
onmouseout=MM_swapImgRestore()
href=""><IMG height=17
src="HTML/17a_files/shopping_bt_o
ff.gif" width=129 border=0
name=Imagesh_%%itm_id%%></P>

</TD>
<TD style="BACKGROUND-REPEAT: repeat-
y" width=24
background=HTML/17a_files/mb_right.gif>
</TD>

</TR>
<TR height=24>

<TD vAlign=bottom align=left width=24
height=24>

<IMG
src="HTML/17a_files/mb_left_botto
m02.gif">

</TD>
<TD style="BACKGROUND-POSITION: 50%
bottom; BACKGROUND-REPEAT: repeat-x"
background=HTML/17a_files/mb_bottom.gi
f height=24> </TD>
<TD vAlign=bottom align=right width=24
height=24>

<IMG
src="HTML/17a_files/mb_right_bott
om02.gif">

</TD>
</TR>

</TBODY>

</TABLE>

</TD>
</TR>
</TBODY>

</TABLE>

Page Management:

Page Manager

Header Collection Manager

Side-Bar Collection Manager

Main Content Collection Manager

THTML provides tags for defining patterns for the dynamic display of components as a
grid. There are four different row types:

• <brolintag name="row1" type="object"> single component
• <brolintag name="row2" type="object"> two components
• <brolintag name="row3" type="object"> three components
• <brolintag name="row4" type="object"> four components

The following is the Main Content section Style A for Page Style 14:

<table width="100%" border="0" cellspacing="0" cellpadding="0">

<tr>

<td align="left" valign="top">

%%Contents%%

<brolintag name="row1" type="object">

<table width="100%" border="0" cellspacing="0"
cellpadding="0">

<tr>

<td>%%MB%%</td>
</tr>

</table>

</brolintag>

<brolintag name="row2" type="object">

<table width="100%" border="0" cellspacing="0"
cellpadding="0" height="1">

<tr>
<td id="r21" valign=top style="padding-
right:7;">%%MB1%%</td>
<td id="r22" valign=top style="padding-
left:7;">%%MB2%%</td>

</tr>

</table>

</brolintag>

<brolintag name="row3" type="object">

<table width="100%" border="0" cellspacing="0"
cellpadding="0" height="1">

<tr><td width=33% id="r31" style="padding-
right:7;">%%MB1%%</td>

<td width=33% id="r32" style="padding-
right:7; padding-left:7;">%%MB2%%</td>
<td width=33% id="r33" style="padding-
left:7;">%%MB3%%</td>

</tr>

</table>

</brolintag>

<brolintag name="row4" type="object">

<table width="100%" border="0" cellspacing="0"
cellpadding="0" height="1">

<tr>

<td width=33% id="r41" style="padding-
right:7;">%%MB1%%</td>
<td width=33% id="r42" style="padding-
right:7; padding-left:7;">%%MB2%%</td>
<td width=33% id="r43" style="padding-
right:7; padding-left:7;">%%MB3%%</td>
<td width=33% id="r44" style="padding-
left:7;">%%MB4%%</td>

</tr>

</table>

</brolintag>

</td>

</tr>

</table>

Footer Collection Manager

Style Manager

Style Manger is used to add and update Styles. It also used to view, download, and copy
Standard Styles. Style Manger also lists the Available Tags for the applicable Page,
Section, or Component Type. For a detailed explanation of Style Manger and how to use

it, see the Style Manager section of the Utilities Chapter in the PortalProdigy User and
Administration Guide.

After you load a Page style or a Section Style you need to run the Component
Verification process. This process identifies and lists each Component Style contained
within the Page or Section Style. It helps you identify problems and exclude Component
Styles that you don’t want updated. It is accessed from Style Manager by clicking on the
Components Verification button.

You need to check the checkbox for each Component Style that you want added if it is a
new style, or updated if it is an existing style. If a Component Style is not listed, there is
probably a problem with the tags. If you modified a Standard Style it necessary to
rename and load it as a Custom Style. The Component Verification process will help you
catch such oversights. For a detailed explanation of Components Style Verification and
how to use it, see the Components Style Verification section of the Utilities Chapter in
the PortalProdigy User and Administration Guide.

Page Type Manager

Other Useful Information:

Images
PortalProdigy includes an Image Fill Color Processor that dynamically changes the fill
color of GIF images based on a Page’s Color Settings. This is useful for GIFs that are
used to create special affects such as rounded corners. It frees you from hard coding their
colors, thus allowing the end user to dynamically control them.

To take advantage of the Image Fill Color Processor you must use PortalProdigy’s pre-
defined GIF images. You will see them used throughout the standard styles. They are
also listed in the Image Directory which can be accessed from the Utilities menu by
selecting the Images Directory option.

How does the web designer enter the path so our Parser will properly save it? Are some
of these GIF images stored separately in template folders?

Page Caching:
PortalProdigy preassembles Pages and caches them in order to provide faster page
delivery. Typically everything except for the main content section is preassembled and
cached. If you find that a page does not include a change to one of your styles or
components, go to the Page Manager for the page and click the Preview button. This will
force a rebuild of the page and update the cache.

Search Engine Optimization (SEO)

Page Titles, Meta Tag Descriptions, and Meta Tag Keywords are maintained from within
the PortalProdigy user interface. THTML provides tags that are used to dynamically
insert these values. PortalProdigy can automatically generate Page Titles, Meta Tag
Descriptions and Meta Tag Keywords for each Product Item, Event, News Item,
Document, etc. These values can be manually entered for each record as well as
inherited from other records. The only thing you have to do as the web designer is to
include the following tags in each of your Page Styles:

<TITLE>%%PageTitle%%</TITLE>
<META content="" name=Description>
<META content="" name=keywords>

PortalProdigy also provides the ability to automatically create Landing Pages and a
Landing Page Site Map. Landing Pages are pages that are optimized for search engines.
Successful Landing Pages are static HTML, small in size, do not contain scripts, contain
summarized information about the subject that is optimized for search engines (relative
keywords are reused in viewable subject information and are contained in page title), and
have URLs that contain keywords such as product names, news titles, etc. Landing pages
are designed to induce the viewer to click to view additional information or to purchase a
product.

PortalProdigy can create Landing Pages for the following:

 Documents
 Events
 Exchange Postings
 Memberships
 News Articles
 Product Items

PortalProdigy allows you to create custom styles for Landing Pages.

You need to provide a visible link to the Landing Page Site Map on the site’s Home Page.

Script to cache images in browser:

By default we disable caching because it prevents changes from being viewed. Use the
following script to cache commonly used images that are not planned to be changed such
as images included with PortalProdigy or that will be changed infrequently.

 <script LANGUAGE="JavaScript">
 logo1Image = new Image(); logo1Image.src = "images/logo1.gif";
 img1=new Image(); img1.src ="images/bullet.gif";
 img2=new Image(); img2.src ="images/transparent.gif";
 </script>

